

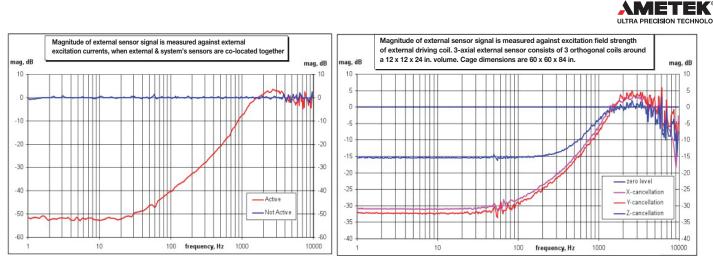


GENERAL MICROTECHNOLOGY & PHOTONICS

Mag-NetXTM Magnetic Field Cancellation

Building upon our advanced control systems engineering and technology to actively sense and cancel building floor vibrations, we now offer Mag-NetX^{n_1}, an innovative system providing active compensation of magnetic field fluctuations.

Designed both for point-of-use and OEM applications, Mag-NetX is ideal for scanning and transmission electron microscopes, electron beam lithography systems, ion beam instruments, and any tools that incorporate a charged beam. Combining Mag-NetX with TMC's advanced vibration isolation systems, we can provide the ultimate control of vibration and magnetic fields.



Features & Benefits

- Helmholtz coil pairs for maximum symmetry and uniformity
- Continuous field cancellation
- Continuous field monitoring
- Set and forget operation
- Several AC and DC cancellation modes available
- 100x field improvement (typical)
- Dynamic, 100 µs response
- Accurate field measurement
- Graphical User Interface with continuous system monitoring and analysis
- Optional feedforward compensation of line frequency and harmonics
- Optional feedforward capability for other inputs
- Optional custom field creation while suppressing disturbance
- Easy to assemble stainless steel cage, in-room wall-mount systems also available

How to order:

Contact TMC. An Applications Engineer will configure a system for your unique requirements and provide a quotation.

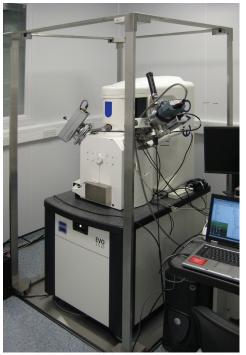
Plot 1. • Magnitude of external sensor signal is measured against disturbance field strength of external excitation driving coil.
• Helmholtz Cage size 36 x 36 x 52 in. (91 x 91 x 132 cm)
• The best performance is at the system sensor location.

GENERAL SPECIFICATIO

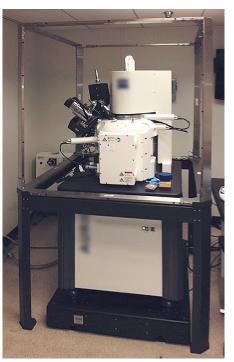
1. System Components:	Up to 3-axes orthogonal magnetic sensor, Mag-NetX controller, Up to 3 orthogonal pairs of coils	3. Mag-NetX Controller:	3 channels for X, Y, Z cancellation, 1U standard case 17 x 9 x 1.75 in. (43 x 23 x 4.5 cm)
2. Performance: Active Magnetic Field Cancellation Axes Sensor type, sensor noise Max ambient DC field (sensor dependent) Bandwidth Dynamic range – ability to c (depends on cage and frequ Controlling volume vs. magnetic field flux density		Operational modes:	After power-on: Automatic self test/calibration and switch to controlled mode in 1 minute, no user involvement required. Manual test / debug mode. True DC mode (compensating Earth magnetic field) Offset-DC mode (Earth magnetic field ignored) Track DC-shift due to microscope moving parts Quasi-DC mode (ignoring slow, >100 sec, fluctuations) Cancel-and-Create (simultaneously cancelling disturbance
Field reduction ratio at sens (using typical console-mour of $X*Y*Z = 36 \times 36 \times 52$ in.	ting cage in DC – 100 Hz 26 dB [20x] (typical) in 100 – 500 Hz	Types of control loops:	and creating custom field) Analog feedback with digitally controlled gain, DC - 2 KHz Digital feedback Digital feedforward (cancels AC-line power frequency and harmonics without gain-stability limits of feedback)
[91 x 91 x 132 cm]) Field reduction ratio in a typ of electron microscope colu X*Y*Z = 12 x 12 x 24 in. [30 x 30 x 60 cm], using typ standing cage of 60 x 60 x for (152 x 152 x 213 cm)	mn: X, Y: 20 dB [10 x] (typical) in 100 – 500 Hz Z: 15 dB [5.2 x] (typical) in DC – 100 Hz ical floor- Z: 10 dB [3 x] (typical) in 100 – 500 Hz		Green – OK, Yellow – Warning/Error Show menu and status Show X, Y, Z real time strength of compensation field For LCD menu access For calibration testing/debugging Graphical user interface for advanced tuning/testing, accepts ASCII commands and shows menu Can be used as feedforward or to create custom field Binary, for usage as input for protected system 90 - 240 VAC 50/60 Hz, 500 VA max

- Plot 2.
- Magnitude of external sensor signal is measured against disturbance field strength of external excitation driving coil.
 - Helmholtz Cage size 60 x 60 x 84 in. (152 x 152 x 213 cm).
 - 3-axial external sensor consists of 3 orthogonal coils around a 12 x 12 x 24 in. volume.
 - Excitation coil positioned outside Helmholtz cage, external sensor coils positioned around system sensors.
 - Due to cage dimensions, Z suppression is lower because Z-compensation field has lower uniformity than X and Y, but longer protected dimension (24 in. vs. 12 in. for X and Y).

NS (may vary depending on configuration)



Column-Mounted Helmholtz Coils


Column-mounted Helmholtz Coils are readily adapted to SEM columns but impractical for TEMs.

Floor-Mounted Helmholtz Coils

Floor-mounted Helmholtz Coils may be used for both SEMs and TEMs.

Helmholtz Coils on Leg Frame

Helmholtz Coils may be mounted on a TMC leg frame.

Wall-Mounted Helmholtz Coils

Wall-mounted coils are a practical alternative to column and floor-mounted coils for TEMs and SEMs installed near the center of a room.

www.gmp.ch

CH-1020 Renens CH-8117 Fällanden Tél. 021 633 21 21 Tel. 044 825 34 00 Fax. 021 633 21 29 Fax. 044 825 34 01